
Time complexity of
recursive algorithms.

Master theorem
Lecture 06.04

by Marina Barsky

Running time

❏ To estimate asymptotic running time in non-
recursive algorithms we sum up the number of
operations and ignore the constants

❏ For recursive algorithms (binary search, merge
sort) we draw the recursion tree, count
number of operations at each level, and
multiply this number by the height of the tree

Running time as a recurrence
relation
Binary search:

T(n) = T(n/2) + O(1) →

Merge sort:

T(n) = 2 T(n/2) + O(n) →

Running time for the input of size n is equal the running time
for the input of size n/2 plus a constant

Running time for the input of size n is equal twice the
running time for the input of size n/2 plus O(n) work

Wouldn't it be nice if we could solve the running
time directly from the recurrence relation?

O(log n)

O(n log n)

Generic form of a recursive algorithm

if n < some constant k:
Solve x directly without recursion

else:
Divide x into a subproblems, each having size n/b
Call procedure rec recursively on each subproblem
Combine the results from the subproblems in time O(nd)

Algorithm rec (input x of size n)

Running time: T(n) = aT(n/b) +O(nd)
where O(nd) is time to both divide and combine the
results

Generic tree: tree height
T(n) = aT(n/b) +O(nd)

Level

n

n/b n/b...

n/bi

1 1...

..
.

..
.

0

1

i

logbn

Generic tree: # of subproblems at each level

T(n) = aT(n/b) +O(nd)
Level

n

n/b n/b...

n/bi

1 1...

..
.

..
.

0

1

i

logbn

subproblems

1

a

ai

alog(b)n

Generic tree: work per subproblem
T(n) = aT(n/b) +O(nd)

Level

n

n/b n/b...

n/bi

1 1...

..
.

..
.

0

1

i

logbn

#

1

a

ai

alog(b)n

work per
subproblem

nd

(n/b)d

(n/bi)d

(n/blog(b)n)d

Generic tree: work per subproblem
T(n) = aT(n/b) +O(nd)

Level

n

n/b n/b...

n/bi

1 1...

..
.

..
.

0

1

i

logbn

#

1

a

ai

alog(b)n

work per
subproblem

nd

(n/b)d

(n/bi)d

(n/blog(b)n)d

Total work: ?

Generic tree: total work
T(n) = aT(n/b) +O(nd)

Level

n

n/b n/b...

n/bi

1 1...

..
.

..
.

0

1

i

logbn

#

1

a

ai

alog(b)n

work per
subproblem

nd

(n/b)d

(n/bi)d

(n/blog(b)n)d

a0 ∗ nd + a1∗(n/b1)d + a2∗(n/b2)d + … + alog(b)n∗(n/blog(b)n)d

Counting total work

a0 ∗ nd + a1∗(n/b1)d + a2∗(n/b2)d + … + alog(b)n∗(n/blog(b)n)d =

nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

Sum of geometric series

a0 ∗ nd + a1∗(n/b1)d + a2∗(n/b2)d + … + alog(b)n∗(n/blog(b)n)d =

nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

The sum of geometric series with k elements (k>=2):

1+1∗r + 1∗r2 + … 1∗rk =

1 - rk

1 - r

Sum of geometric series: cases

a0 ∗ nd + a1∗(n/b1)d + a2∗(n/b2)d + … + alog(b)n∗(n/blog(b)n)d =

nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

The sum of geometric series with k elements:

1+1∗r + 1∗r2 + … 1∗rk

1 - rk

1 - r
Case 1: r < 1. Sum becomes 2: O(1) (constant)

Case 2: r=1. Sum becomes k: O(k)

Case 3: r>1. Sum becomes O(rk-1)=O(rk)

It all depends on r = a/bd

Total work: nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

The sum of geometric series with k elements:

1+1∗r + 1∗r2 + … 1∗rk

Our r is a/bd

Our k is logbn

It all depends on r = a/bd

Total work: nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

The sum of geometric series with k elements:

1+1∗r + 1∗r2 + … 1∗rk

Case 1: r < 1. Sum becomes 2: O(1) (constant)

a/bd< 1 Complexity becomes O(nd ∗2) = O(nd)

Case 2: r=1. Sum becomes k: O(k)

a/bd= 1 Complexity becomes O(nd ∗log(b)n)

Case 3: r>1. Sum becomes O(rk)

a/bd> 1 Complexity becomes O(nd ∗(a/bd)log(b)n)

We have shown that:

Total work of a generic recursive algorithm

T(n) = aT(n/b) +O(nd) =

nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

Case 1: a/bd < 1. O(nd)

Case 2: a/bd =1. O(nd log n)

Case 3: a/bd >1. O(nd *(a/bd)log(b)d)

We have shown that:

Total work of a generic recursive algorithm

T(n) = aT(n/b) +O(nd) =

nd ∗ [1 + a/bd + (a/bd)2 + (a/bd)3 + … + (a/bd)log(b)n]

Case 1: a/bd < 1. O(nd)

Case 2: a/bd =1. O(nd log n)

Case 3: a/bd >1. O(nd *(a/bd)log(b)d)

Simplifying case notation

Total work of a generic recursive algorithm

T(n) = aT(n/b) +O(nd)

Case 1: a/bd < 1. O(nd)

Case 2: a/bd =1. O(nd log n)

Case 3: a/bd >1. O(nd *(a/bd)log(b)d)

a/bd < 1 ⟺ d > logba

a/bd = 1 ⟺ d = logba

a/bd > 1 ⟺ d < logba

Simplifying nd *(a/bd)log(b)d

nd *(a/bd)log(b)d=nd *alog(b)n/bd log(b)n

But:
bd log(b)n = nd

easy to see if you take logb of both sides:
logb(bd log(b)n) = d logbn
logb(nd) = d logbn

nd *(a/bd)log(b)d=nd *alog(b)n/bd log(b)n=nd *alog(b)n/nd=alog(b)n

Simplifying alog(b)n

nd *(a/bd)log(b)d=alog(b)n

alog(b)n = nlog(b) a

easy to see if you take loga of both sides:
loga(a

log(b)n) = logbn
loga(n

log(b) a) = logba * logan = logbn

nd *(a/bd)log(b)d=alog(b)n=nlog(b) a

change of base

This is called Master theorem

1. if d > logba then O(nd)
2. if d = logba then O(nd * log n)
3. if d < logba then O(nlog(b)a)

T(n) = aT(n/b) +O(nd)

Pre-conditions:
b > 1 (the subproblem size decreases)
a > 0 (the problem is reduced to a smaller sub problem at least

once. At least one recursion level)
d>=0 (the amount of work is polynomial in n)

Example: binary search

T(n) = T(n/2) + 1

T(n) = 1∗T(n/2) + n0

a = 1

b = 2

d = 0

d = logba

O(n0 ∗log n) = O(log n)

if d > logba then O(nd)

if d = logba then O(nd * log n)

if d < logba then O(nlog(b)a)

T(n) = aT(n/b) +O(nd)

Example: merge sort

T(n) = 2T(n/2) + O(n1)

a = 2

b = 2

d = 1

1 = log22

O(n1 ∗log n) = O(n log n)

if d > logba then O(nd)

if d = logba then O(nd * log n)

if d < logba then O(nlog(b)a)

T(n) = aT(n/b) +O(nd)

Example: closest pair with O(n2)
combine

T(n) = 2T(n/2) + O(n2)

a = 2

b = 2

d = 2

2 > log22

O(n2)

if d > logba then O(nd)

if d = logba then O(nd * log n)

if d < logba then O(nlog(b)a)

T(n) = aT(n/b) +O(nd)

Example: polynomial multiplication

T(n) = 4T(n/2) + O(n1)

a = 4

b = 2

d = 1

1 < log24

O(nlog(2)4) = O (n2)

if d > logba then O(nd)

if d = logba then O(nd * log n)

if d < logba then O(nlog(b)a)

T(n) = aT(n/b) +O(nd)

Example: fast polynomial
multiplication

T(n) = 3T(n/2) + O(n1)

a = 3

b = 2

d = 1

1 < log23

O(nlog(2)3)

if d > logba then O(nd)

if d = logba then O(nd * log n)

if d < logba then O(nlog(b)a)

T(n) = aT(n/b) +O(nd)

Intuitive approach
Compare the total amount of work at the first two levels:

❏ If total work is the same - this is geometric series with r=1. The
complexity is: work on each level * number of levels.

❏ If total work at the first level > total work at the second level -
this is convergent geometric series with r<1. Running time will
be dominated by the work at the first level.

❏ If total work at the first level < total work at the second level -
this is sum of geometric series with r>1. Running time will be
dominated by the work at the last level: multiply total number
of subproblems at the last level by work done for each
subproblem

Intuitive example 1:

T(n) = T(n/2) + n2

total work on the first level: n2

total work on the second level: (n/2)2 = n2/4 < n2

This is converging geometric series with r<1

The most important term is at the first level: O(n2)

Complexity: O(n2)

Intuitive example 2:

T(n) = 3T(n/3) + n

total work on the first level: n

total work on the second level: 3*(n/3) = n

This is geometric series with r=1

All terms are important:

work per level* total levels = n * log3n

Complexity: O(n log n)

Intuitive example 3:
large-integer multiplication

T(n) = 4T(n/2) + n

total work on the first level: n

total work on the second level: 4*(n/2) = 2n

This is diverging geometric series with r>1

The most important term is at the last level: O(nlog(b) a)

Complexity: O(nlog(2) 4)= O(n2)

Intuitive example 3':
fast large-integer multiplication

T(n) = 3T(n/2) + n

total work on the first level: n

total work on the second level: 3/2*n

This is diverging geometric series with r>1

The most important term is at the last level: O(nlog(b) a)

Complexity: O(nlog(2) 3)= O(n1.585)

Intuitive example 4:
matrix multiplication

T(n) = 8T(n/2) + n2

total work on the first level: n2

total work on the second level: 8*(n/2)2 = 2n2

This is expanding geometric series with r>1

The most important term is at the last level: O(nlog(b) a)

Complexity: O(nlog(2) 8)= O(n3)

Intuitive example 4':
fast matrix multiplication

T(n) = 7T(n/2) + n2

total work on the first level: n2

total work on the second level: 7*(n/2)2 = 7/4 n2

This is expanding geometric series with r>1

The most important term is at the last level: O(nlog(b) a)

Complexity: O(nlog(2) 7)= O(nlog 7) = O(n2.8)

Applicability of Master theorem

a > 0

b > 1

The work at each level is polynomial in n, d>=0

Can we solve the following recursion using Master
method?

T(n) = 2T(n/2) + log n

T(n) = aT(n/b) +O(nd)

NO!

So how to solve this recurrence?

T(n) = 2T(n/2) + log n

One idea: intuitively estimate the work at each

level

The height of the recursion tree is still log n

The work at level 1 is log n, the work at level 2

is 2 times log (n/2) = 2*log(n/2) = log n

Same work at all levels: O(log n * log n)

Reading

Attached Chapter 11 of

“Algorithm Design and Applications”

by Goodrich and Tomassia

